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J. Phys. A :  Gen. Phys., 19’70, Vol. 3. Printed in Great Britain 

Covariant theory of the quantized electromagnetic field 
with only physical photons 

P. M. MATHEWS 
Division of Theoretical Physics, University of Madras, Madras 25, India 
MS.  received 13th  February 1970 

Abstract. A manifestly covariant procedure for quantization of the electro- 
magnetic potentials AF is presented, wherein only two types of photons with 
space-like polarization vectors find a place. The non-appearance of unphysical 
photons corresponding to the longitudinal and scalar photons of other formula- 
tions is due to our insistence from the beginning that the Lorentz condition be 
satisfied (as an operator equation) by the A?, and it makes the introduction of 
any indefinite metric unnecessary. The wave functions of the physical photons, 
which appear in the plane wave expansion of the AN, are definable in pvinciple 
only to within arbitrary gauge terms. Consequently, expressions for the 
commutator between the field components and for the photon propagator 
contain indeterminate terms which serve merely to ensure that A@ is coupled 
only to conserved currents; they do not contribute to physical matrix elements. 
Our theory therefore leads to the same results in quantum electrodynamics as 
earlier formulations, but in a manifestly Lorentz covariant and gauge invariant 
fashion and without recourse to concepts like the indefinite metric or any other 
ad hoc prescriptions. 

1. Introduction 
I t  is a strange fact that though the quantization of the electromagnetic field was 

carried out soon after the formulation of the quantum theory itself (Dirac 1927), and 
subsequent developments in the field of electrodynamics have led to dazzlingly 
successful results, the basic theory of the quantized electromagnetic field has 
remained fundamentally unsatisfactory in several respects. One of these, with which 
the present paper is concerned, is the quantization procedure itself. Since Maxwell’s 
equations for electromagnetism, expressible in the form 

are manifestly covariant under Lorentz transformation and also invariant under the 
gauge transformation 

where 1 1  is an arbitrary function, it would be natural to expect the procedure for 
quantizing the field AU to be ( U )  manifestly covariant, ( b )  applicable in an arbitrary 
gauge and (c) such that Maxwell’s equations (1) continue to be valid, now as equations 
for the opevatovs A U .  However, it appeared right from the beginning that this expecta- 
tion was doomed to remain unrealized, for the different requirements seemed to 
impose conflicting conditions on the field variables. It is well known, for instance, 
that the manifestly covariant quantum rulet 

AU -+ Au+ ai1A (2) 

[AU(x), Av(y)] = - iguvD(x-y) (3) 
t Notation: x = {xu) = (xo, x’, x2, x3); 8, = aj8.x.. The metric go” is diagonal, with 

signature + - - - . Units such that ?i = c = 1 are assumed. 
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obtained by independently quantizing the four components AU which are taken to 
satisfy 

(4) CjAU 3 = 0 

is inconsistent with the Lorentz condition 

?,AU = 0 (5) 

needed to supplement (4) in order that Maxwell’s equation ( l b )  be obeyed. T o  get 
around this difficulty, Fermi (1932) proposed a compromise whereby equation (5) 
would not be insisted upon as an operator, but would be replaced by a supplementary 
condition which serves to define a class of ‘physical’ states in which alone Maxwell’s 
equations would hold. The  Gupta-Bleuler method (Gupta 1950, Bleuler 1950) which 
is now presented as standard in many textbooks on quantum field theory? is the 
culmination of this line of thinking. The essential features of this method which are of 
interest to us here are the following. 

(i) The use of an indefinite metric in the definition of scalar products between 
states of the quantized field. This is necessitated by the difficulty in physical inter- 
pretation arising from the negative sign ( -goo) on the right-hand side of (3) when 
,LL = v = 0. The  sign difficulty, in turn, is a consequence of quantizing all the four 
components A” independently of each other, ignoring the interconnection between 
them which is implied by Maxwell’s equations. 

(ii) Validity of Maxwell’s equations only in a very weak sense, as relations between 
expectation values of the FUV in states Y” picked out by the supplementary condition$ 

( e ,  A”+Y = 0 

which replaces the operator equation ( 5 ) .  The abandonment of Maxwell’s equations 
in operator form and the introduction of a supplementary condition on states is forced, 
as already noted, by the incompatibility of ( 5 )  with the covariant commutation rules (3). 

(iii) The existence of states of vanishing norm (permitted by the indefinite metric) 
which obey the supplementary condition. The admixture of such states with states 
of positive norm leads to gauge transformations on expectation values of the AU. 

-4lthough for practical calculations the Gupta-Bleuler formalism has been quite 
satisfactory, it must be considered fundamentally unsatisfactory in principle that 
Maxwell’s equations for the observable fields E and H ,  based on direct experimental 
evidence, are weakened (for the sake of covariance in the commutation rules of the 
unobservable fields A”!). Further, the use of the indefinite metric and the con- 
comitant appearance of ghost states of zero norm are sufficiently unpalatable that 
many authors prefer to employ a different approach in which the covariance is not 
manifest but physical interpretation, according to the conventional concepts of 
quantum theory, is possible. In  this approach, employed originally by Dirac (1927) 
in the quantization of the pure radiation field, a non-covariant decomposition of the 
potentials into transverse, longitudinal and scalar parts is made, the scalar part is 
expressed in terms of the charged matter current with which the electromagnetic 
field interacts, and the longitudinal part is eliminated by choosing the Coulomb 

See, for example, Heitler (1954), Jauch and Rohrlich (1955), Bogoliubov and Shirkov 
(1959), Schweber (1961). 

$ (&A&) + means the positive energy part of &A@. 
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gauge.7 This leaves only the two transverse degrees of freedom to be independently 
quantized in the usual fashion. One of the most unappealing features of the resulting 
theory is the appearance of a non-covariant term in the transverse-photon propagator, 
whose effects are to be cancelled ultimately by a contribution from an instan- 
taneous Coulomb interaction. Further, by working in a specific gauge (whose 
characterization is by itself non-covariant), one has also lost explicit gauge invariance. 
Of course one verifies in the end that the final results are Lorentz covariant and 
gauge invariant. 

During the course of four decades that have elapsed since Dirac’s original work, 
approaches other than the above two widely used ones have been proposed, for 
example, one based on the use of potentials defined gauge-invariantly (Mandelstam 
1962, Rhorlich and Strocchi 1965), but not with any conspicuous success. Efforts 
in recent years aimed at deriving manifestly covariant schemes free of the less palat- 
able features of the Fermi-Gupta-Bleuler method have produced a number of ad hoc 
prescriptions-like the introduction of auxiliary fields (Nakanishi 1967, Yokoyama 
1968)-and others relying on rather drastic steps like dissociating the free-field theory 
from any limiting form of the theory with interaction, denying thereby the possibility 
of having an interaction picture (Just 1965). These have been resorted to because it was 
clear that a straightforward modification of the commutation rule (3) to take account 
of the Lorentz condition by subtracting from g U v  a term proportional to kbkv (in the 
momentum representation) would lead to meaningless results (unlike the case of the 
massil e vector field), because of the zero length of the four-vector kU. What had not 
been generally realized, however, is that the AU, which define the electric and magnetic 
fields through equations (l), need not transform strictly as the components of a vector 
and that the conditions on the commutator arising from its supposed tensor character 
therefore become correspondingly less stringent. Once this fact is fully appreciated, 
the foundations of the widely held belief that potentials of the Maxwell fields cannot 
be covariantly quantized (without the aid of indefinite metric, etc.) get seriously 
eroded. In  fact the author has already set up a covariant, gauge-invariant quantization 
procedure wherein the Maxwell equations are taken care of (in a covariant fashion) 
right at the beginning, before quantization, and no supplementary conditions, 
indefinite metric etc., are required. The salient points of the new approach 
have been given in outline in a recent paper (Mathews 1969 a). In  this paper 
we present the theory in greater detail, including a discussion of certain features 
which will undoubtedly appear strange at first sight (e.g. terms in the com- 
mutator whose magnitude is indeterminate in principle). The  latter are intimately 
related to questions of gauge invariance and covariance, which are important in 
themselves and are also of direct relevance in understanding the nature of the 
Hilbert space of photon states. An analysis of these will form an essential part of 
our discussion. 

2. Quantization 
In  our approach to the quantization problem it is a fundamental requirement 

that the electromagnetic potential must satisfy Maxwell’s equations (1) or 

t For accounts of this type of approach, see, for instance, Schiff (1955), Rjorken and Drell 
(1965) and Weinberg (1965). The  decomposition of the AV suggested by Schwinger (1948) is 
also essentially of the same kind, though the lack of covariance is here masked by the introduc- 
tion of an extraneous time-like unit vector. A very instructive comparison of calculations using 
the non-covariant and Gupta-Bleuler methods may be found in the book by Heitler (1954). 
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equivalently,? both the Klein-Gordon equation (4) and the Lorentz condition (5). 
Therefore we can decompose the real field Ap(x) in the usual manner into 

{A!i((k) e -1k.z + Au*((k) eik.  xl 
I 

and ko = + Ikl. 

d3k 
= ( z n ) - 3 i 2  -- I (2k0) l t2  

with 
k * x = kOxO-k . x 

On account of our insistence on equation (5), the Fourier coefficients A’(k) must 
satisfy 

Now, k’ being a light-like four-vector, it is known (Wigner 1939) that the space 
orthogonal to it can be spanned by a basis consisting of the vector kfl itself and two 
space-like vectors, ul” and ZQ, all mutually orthogonal. It follows then that A@“(), 
which by (7) is orthogonal to k”, can be written as 

k,,A@(k) = 0. (7) 

with 

and 

3 

A’”(k) = a,(k)u,U(k) 
? = l  

Thus the fow quantities A U ( k )  are expressed in terms of three amplitudes a,(k) of 
which only the first two contribute to observable quantities (since the term in 
u 3 j L  = ku in (8) drops out when Fuv = ?Av- ?Au is formed). It is easy, for instance, 
to verify that the energy momentum vector 

€” = (FuRFpo + &FQ“F,,g@O) d3x I 
which may be obtained from the gauge-invariant Lagrangian density 

by the application of Noether’s theorem, takes the form 

( 1 4  

(13) 

pu = -1 I d3k k”[AQ(k)A,*(k) + Ap*(k)Ap(k)l 

Pu = & 1 d3k kU 2 (aiai* + ui*ai) 

which reduces to 
a 

i = l  

t Actually the general solution of: (1) contains, in addition to  the general solution of the‘ 
simultaneous equations (4) and (j), a term of the form 8.x which does not contribute t o  FWv 
and hence to any observable quantities. Since 6i1x, by definition, does not satisfy (j), its 
Fourier components are associated with four vectors kr* of non-zero length. Consequently 
x must remain as a c number function even in the quantized theory, since if its Fourier co- 
efficients were elevated to  operator status, it  would amount to  introducing ‘photons’ of various 
masses k2 # 0. Such a c number part in Ar* would have no role to  play in the theory and can 
indeed be eliminated by a c number gauge transformation which takes one into the Lorentz 
gauge. Gauge transformations zcithin the Lorentz gauge, however, are of a fundamentally 
different nature, as wil! be seen below. 
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on introducing (8) and using equations (9). It is noteworthy that Pp here depends 
only on two amplitudest and that H is positive definite as it stands, though this is 
really not surprising since we have already taken account of Maxwell’s equations in 
full. The  quantum conditions required for particle interpretation are clearly 

[a i (k ) ,  nj* (k ’ ) ]  = Si j  S(k - k ’ )  
(14) 

[a,(k) ,  a j (k ’ )]  = [a,*(k), aj*(k’)]  = 0 .  (i,j = 1,2) 

At this point it appears that the amplitude a3 does not have any particular role to 
play, and one might be tempted to treat it as a mere c number and get rid of it from 
Al” by a c number gauge transformation. However, such a procedure would not be 
invariant because the distinction between a, and a2 on the one hand and a3 on the 
other is not an invariant one-this can be seen by changing to a basis ur‘ related to the 
UT by 

U, = ui’+fz13’, 112 = u2’+gu3‘ ,  U 3  = /ZU3‘ (15) 

where f ,  g, h are arbitrary constants, The  U,’ possess the same orthonormality prop- 
erties$ (9) as the u ~ .  On substituting (15) in (8) we see that the change to the new basis 
induces the following transformation on the expansion coefficients : 

a,  -+a,’ = a,, u2 - - fa2’  = a2,  a3 -+a3’ =fa,+ga,+Iza,. (16) 

I t  is clear that even if a3 were chosen to be a c number a3’ would not be one. How- 
ever, it is important to recognize that a,, a2 (and their Hermitian conjugates) are still 
the only independent operators in the theory. The  operator nature of a3 arises solely 
from possible admixtures of a,  and a2 as in (16). A consequence of this, which has 
no parallel in the quantum theory of any other known system, is that all commutators 
involving a3 or u3* are indeterminate in principle. It may be verified that it is impos- 
sible to keep the value of such commutators invariant under the transformation (16), 
for allf, g, and h. 

Since we can neither eliminate u3 from the theory in an invariant way, nor assign 
definite values to its commutators, the presence of undetermined terms in the 
commutator of the potentials AU is inescapable. We have, in fact, 

[Ap(k) ,  A”*(k’)]  = { u , ~ z I ~ ’  + u ~ ~ u ~ ~  + k’f’ +,fu*kv’ J 6 ( k - k ‘ )  (17) 

(18) 
where 

6(k - k’)f’” = [a3(k), a,*(k‘) U,’ + a2*(k’) uZv +3-u3*(k’) u3v]  

t The absence of any term containing u 3  in (13) is one of the important consequences of the 
vanishing norm of u 3 .  The presence in All of a part of vanishing norm is responsible for practically 
all the difficulties peculiar to the massless vector field, in the quantization procedure as  well as 
in physical interpretation. It may be remarked here that, while the massive vector field also 
can be resolved in exactly the same form as in (8), all three U ,  are of non-vanishing norm there 
and so the P” contain all the three U,. See Mathews (1969 b). 

t That this is so despite the complete arbitrariness off, g, and h, is another consequence of 
the zero norm of 2 1 3 .  This may be contrasted with the usual situation where the preservation of 
orthonormality requires the coefficients characterizing the basis transformation to be con- 
strained by unitarity conditions. 

5 In view of this we may (after eliminating any c number part in u3 through a c number 
gauge transformation) write a3  simply as f a l  +gaz, where the values of the coefficients f and g 
are arbitrary and indeterminate. Such a representation will be found particularly useful in 
discussing the Hilbert space of photon states. See below. 
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is indeterminate. Nevertheless it follows from (9c) and (18) that 

k,lfi” = 0 (19) 
and therefore it is trivial to verify explicitly that the commutation relation (17) is 
consistent with the Lorentz condition. The  5 alidity of Maxwell’s equations as 
operator equations, on Lvhich we have insisted from the beginning, is thus ensured, 
and there is no need for supplementary conditions. The  price paid for this is the 
occurrence of indeterminate terms in the commutator which cannot be objected to on 
principle since Ab itself is unobservablet and undefined to the extent of arbitrary 
gauge terms. It must be proved of course that no practical difficulties arise from the 
presence of these terms, and we shall come to this aspect presently, but first we 
rewrite (17) in an alternative form which brings the familiar guy into the commutator. 

Let us introduce a fourth vector uOu which, together with the urU, forms a basis 
for the whole four-dimensional vector space. The  scalar product of uo with z13 

must be necessarily non-zero1 and v,e take it to be unity. Without loss of generality 
we can take zio to be light-like and orthogonal to zi l  and zi2. Thus 

Uo%Lop = 0, u O ~ u l u  = 0 ( i  = 1,2), Zl0%Lgp = 1. (20) 

(21) 

The tensor guL can be expressed in terms of the U, ( x  = 0, 1,2,  3) as 

gUv = u ~ ~ z ~ ~ ~  - zilUzll’ - u ~ ~ ~ L ~ ~ ~  t Z L ~ ~ ~ U O ” .  

That the expression (21) does act as the index-raising operator can be verified with 
the aid of (9) and (20). Using (21) in (17) we now rewrite the commutator as 

[Au“(), A”(k’)] = { -guy + ~ ~ o ’ k ’  -r hU~loL + k”fv  +f’””k”)S(k - k ’ ) .  (22) 
This expression differs from the familiar - g k ^ ”  6( k - k’) of the Fermi-Gupta-Bleuler 
theory by terms which are all proportional to kfi or kv, and of course a similar 
situation holds in the case of the propagator. However, it has already been proved in 
connection with the non-covariant (Coulomb gauge) approach that such terms do not 
make any contribution to the complete amplitudes for any physical process. Conse- 
quently, our theory does not change any of the standard results. This is indeed 
eminently satisfactory. 

3. Covariance 
Returning now to the question of covariance, me observe that though we have had 

to prescribe quantum rules for only two truly independent pairs of operators a,, a$ 
(i = 1, Z), exactly as in the non-covariant Coulomb gauge approach, we have never- 
theless not had to abandon covariance in order to achieve this. The  resolution of 
Ab( k )  at each point in momentum space, which gave us the amplitudes to be quantized, 
was done in terms of a basis U,( k )  which was defined in a manifestly covariant fashion 

t It may be recalled here that the unobservability of Ax has had to be invoked in some other 
treatments too, e.g. in the Coulomb gauge approach where the commutator of Ax@) and A v ( y )  
at space-like separations (x - y )  turns out to be non-vanishing. See, for example, Schiff (19551, 

1 If U? (a = 0 ,  1, 2 ,  3) formed a basis for the four-vector space, and u3  were orthogonal to 
all four of these, then it would be orthogonal to the whole space and must necessarily vanish. 

5 The contribution at a given vertex is not necessarily zero, but when the different possible 
positions (relative to other vertices) a t  which a given photon line can be attached to a given 
electron line are all taken into account, the total contribution vanishes. See, for instance, 
Bjorken and Drell (1965, chap. 17). 
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through the Lorentz condition Kgu,U = 0. Despite this, however, the fact remains 
(paradoxical as it may seem) that the expression (22) for the commutator is not 
Lorentz invariant in the conventional sense, i.e. the right-hand member in ( E ) ,  
considered as a function of k ,  does not form an inaariant tensor field as would 
normally be expected, because the factors u,U(i = 1,2) contained in the ,f” and uOu are 
not invariant vector fields. The source of this strange phenomenon is of course to be 
traced again to the vanishing norm of the vector k”. In  the case of the massive vector 
field ( k 2 - m 2  # 0) an identical procedure to what we have advocated in this paper 
(Mathews 1969 b) leads to an invariant form 

[A”“(), AV*“(’)] = - - ~ 6(k - k ‘ )  ( 
for the commutator, the expression in curly brackets being simply the projection 
operator to the three-dimensional space defined by kuAu = 0. When k 2  = 0, on 
the other hand, k” itself belongs to this three-dimensional space and no fourth vector 
orthogonal to this space exists, so that there is no possibility of obtaining the relevant 
projection operator by removing from the unit operator (g””) a projection operator to a 
complementary (one-dimensional) subspace as in (23). In  fact there is not even an 
invariant distinction between the ‘Lorentz subspace’ spanned by the U,” ( r  = 1, 2, 3) 
and the ‘complementary subspace’ defined by uOW, for a basis change of the type (15) 
within the former must be accompanied by a change of u0 also, such that 

in order that the conditions (20) be maintained. The  significant point to note is the 
admixture of the U,’ ( Y  = 1, 2, 3) with the ‘complementary’ vector uO’. The lack of 
Lorentz invariance of the commutator as a whole is directly due to the failure of the 
Lorentz condition to achieve a separation of the four-dimensional space into two 
invariant complementary spaces (just as the presence of indeterminate terms in the 
commutator was caused by the presence of a distinction between u g  on the one hand 
and u1 and u2 on the other, which is not an invariant one). 

It is important to observe that the departure from normal expectations in the 
transformation character of the right-hand side of (22) is intimately linked to the fact 
that the Ab themselves do not transform ‘normally’. Of particular relevance in this 
connection is the work of Strocchi (1967) which shows from very general considera- 
tions that if the Au are required ( a )  to satisfy Maxwell’s equations and (6) to transform 
strictly as the components of a four-vector then the electric and magnetic fields must 
vanish, so that the resulting theory is trivial.? Since we do insist on Maxwell’s 
equations, we have to relax the transformation law of the AU to the extent of allowing 

t Essentially the same result is contained in the earlier work of Wightman and Girding 
(1964). It has been known for some time that, when one works in some special gauge (e.g. one 
in which the vector potential is transverse), the effect of a change in Lorentz frame on the A!@ 
is a combination of the usual linear homogeneous vector transformation, together with a gauge 
transformation, and that the gauge function is in general an operator function (see, for example, 
Bjorlren and Drell1965, chap. 14, Weinberg 1965). What had not been clear is that the occurrence 
of the extra ‘gauge’ term in the transformation law is not just a consequence of using an explic- 
itly non-covariant approach assuming some special gauge, but that it is necessitated by the 
very requirement that Maxwell’s equations be satisfied. 

A3 
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extra ‘gauge’ terms in the transformed field.? The  lack of strict Lorentz invariance 
of the commutator, despite the manifest covariance of the quantization procedure, is a 
manifestation of this relaxation. Nevertheless, as we have already seen, all physical 
results are completely covariant because the ambiguous terms in the commutator 
(those other than -guy in (22)) do not contribute to the total amplitude for any such 
process. 

4. The Hilbert space 
Finally, we would like to discuss briefly the definition of the Hilbert space of 

photon states. We have already mentioned that the only operators in the theory are 
a,, a2 and their Hermitian conjugates, and that, while a3 cannot be invariantly defined 
to be a c number, its operator properties are nevertheless entirely due to arbitrary 
admixtures of a, and u2. -4nother way of expressing this is to rewrite (8) as 

Au(k) = a, (uIfi +fua”] + a2(u2u +gu3Lb} (25) 
with f and g arbitrary. One might even leave out the explicit terms in u3& provided 
u l b  and u2fi are understood to be not specific four-vectors orthogonal to kU, but four- 
vectors which are defined only to within an additive term which is an arbitrary 
multiple of u3@ = Ai‘. 

Let us now define the vacuum state IO} by 

a,  10) = U2 10) = 0 ,  ’OjO:, = 1 (36) 
and from it, build up by repeated application with operators a,*(k) (i = 1, 2), states 

01 TI 

r = l  s = l  

with m photons of ‘type 1’ and IZ photons of ‘type 2’. Every one of these states, for 
any m and n, has positive norm, as can easily be verified by using (26) and (14). The 
linear space spanned by these states in thus endowed with a positive definite metric 
and so is a Hilbert space, exactly as in the case of massive fields. And the operators 
a,*(k) and a,*(k) are creation operators of photons of two types, with momentum k 
and energy lkl, as can be seen by considering the effect of P’, equation (13), on the 
states (27). 

However, there is one outstanding respect in which the present situation differs from 
theories of massive fields. It is that the ware function of the particle (photon) 
created by a,* (or a2*) is not uniquely determined. It is determined only modulo an 
arbitrary multiple of kfi (e.g. U,” +fk” with f arbitrary) and we have a whole equiva- 
lence class of wave functions to describe a specific one-photon state,$ the difference 

t Observe that in view of the nature of the commutator in (22) ,  the two-point Wightman 
function (O:Aw(x) AV(y);O) in our .theory will not have the form gwvDl(x. -5~) + awavD,(x - y )  
which it would have been constrained to have, according to Strocchi (1967), if the A@ trans- 
formed strictly as a four-vector. 

$ Moses (1906) has suggested a quantization procedure similar to ours but with the funda- 
mental difference that he uses a specific set of four-component functions of k in the place of 
our wave functions U%”. In doing so, the fact that u 3  cannot be invariantly defined to he a 
c number, and the consequent arbitrariness in the wave functions created by aI4‘ and a2* (which 
is the essence of the difference between the photon field and other fields), are completely 
missed, Moreover, the use of complicated explicit forms for the zil masks the essential sim- 
plicity of the quantization procedure and makes the covariance anything but manifest. 
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between the various members of the class being a multiple of k’ (or in coordinate space 
language, the gradient of a scalar function). The  essential manner in which the gauge 
freedom enters into the quantum theory of the electromagnetic potentials is thus 
vividly displayed. 

The  fact that a whole equivalence class of wave functions, rather than a single 
unique wave function, may have to be used in the description of a state of a massless 
particle has been recognized in the literature (Shaw 1965) but has certainly not been 
very widely appreciated. I t  may be useful, therefore, to point out here how this 
circumstance arises. It is well known from Wigner’s work on the irreducible repre- 
sentations of the Poincari. group (Wigner 1939) that the zero-mass irreducible 
representations are labelled by an additional quantum number, helicity (which takes 
the place of the spin quantum number of massive particles) and are one-dimensional; 
a massless particle state with definite helicity transforms into itself under all trans- 
formations of the Poincari. group. However, one does not try to represent this state 
by a single-component wave function because the effect of Lorentz transformation on 
such a wave function is expressed through a phase factor with a complicated depend- 
ence on the transformation itself and on the momentum yalue of the state being 
transformed? (i.e. it is a non-local transformation in coordinate space). One employs 
instead a wave function which transforms locally, according to some irreducible 
representation D(k,  I)-or a direct sum of such representations-of the homogeneous 
Lorentz group. Since the maximum helicity contained in D(k ,  1) is k +  1, to describe a 
massless particle of helicity h one needs irreducible representations D(k ,  1) with 
k + 1 2 A, and when h is non-zero this means that k and/or 1 must be non-zero, so 
that the dimension (2k+  1) (21+ 1) of the wave function is greater than unity. Then 
h is not the only helicity contained in the wave function. Nevertheless ifthe helicity h 
projection of this wave function transforms into itself under all Lorentz transforma- 
tions, then one gets a one-to-one correspondence between the states and wave func- 
tions of a massless particle of helicity A. Now, there is a general theorem, proved by 
Weinberg (1 964 b) by applying ‘little group’ considerations to quantized massless 
fields and by the present author (Mathews 1969 c) from elementary quantum mech- 
anics, which states that if, for the description of a massless particle, wave functions 
transforming according to D(k,  1) are used the only invariant helicity is (1 -k ) ,  i.e. 
the projection to the helicity value ( I - k )  is the only one which does not get mixed up 
with other helicity projections under Lorentz transformations. If one insists never- 
theless on using D(k,  I )  to describe some helicity h # (1 -k ) ,  then the admixture of 
other helicity projections which results when Lorentz transformations are performed 
has to be considered to be in the nature of a gauge transformation (and not as the 
introduction of particle states with physical helicity values different from A).  A whole 
class of wave functions, all of which have the same content of the helicity h projection, 
but differ in the admixture of the other helicity parts, is to be identified then with a 
single physical state of helicity A. 

In  the photon case, which is what we are concerned with here, the admissible 
helicity values are + 1 and - 1. Unique wave functions to represent these helicity 
states can be obtained if we use wave functions transforming according 
to D(0,  1) @ D(1, 0) to describe the photon, the D(0, 1) and D(1 ,  0) parts giving us 
invariant helicities + 1 and - 1 respectively by the theorem quoted above. This is 
precisely what we have when a description in terms of the antisymmetric tensor 
field FUV is employed; the transformation of F”’ is equivalent to D(0, 1) @ D(1, 0) .  

t See, for instance, Weinberg (1964 a, appendix A). 
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However, when the four-potential Afi transforming as D(4,  t )  is employed instead, the 
only invariant helicity is zero, which is uninteresting. The physically interesting 
helicities + 1 and - 1 get admixtures of the zero-helicity state (with wave function 
proportional to k ” )  under Lorentz transformations, and this is why one has an equiz3aZ- 
ence class of wave functions (the members of which differ only by gauge transformations 
corresponding to arbitrary admixtures of the helicity zero part) to describe a state of 
given helicity + 1 or - 1, when the potentials Ap are employed. 

5. Conclusions 
Our considerations above have been confined to the free Maxwell field but, as is 

well known, this is all that is needed to make calculations on processes involving 
matter-field interactions, via perturbation theory in the interaction picture. We have 
demonstrated that, in the description of the free electromagnetic fieId, one needs to 
talk of only two types of photons with space-like polarization vectors, covariantly 
defined (which can be made ‘transverse’ in the three-dimensional sense, if need be, by 
choosing the arbitrary constantsf and g in (25 )  in such a way as to make the time-like 
component of the wave function vanish). There is no need to introduce even the 
notion of ‘longitudinal’ and ‘scalar’ photons which have no physical existence. It is 
on account of this that we are able to have a Hilbert space (with a positive definite 
metric) for photons, unlike in the Gupta-Bleuler formalism. At the same time, 
compared with the Coulomb gauge approach (in which also only two types of photons 
are explicitly introduced), we have the advantage of maintaining explicit gauge- 
invariance and manifest covariance. 
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Note Added in Proof. I t  may be noted that in the presence of interactions the AP in the 
Heisenberg picture will have, besides the ‘intrinsic’ part with space-like polarization vectors 
considered above, also an ‘induced’ part which is just a function of the current which interacts 
with the field. The strong resemblance to the Coulomb gauge approach (apart from covariance) 
is obvious, and provides a heuristic argument that the present theory would reproduce the 
conventional results. A detailed treatment of the interacting case will be presented separately. 
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